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Reconstructing Quantum States With Quantum
Reservoir Networks

Sanjib Ghosh , Andrzej Opala, Michał Matuszewski , Tomasz Paterek , and Timothy C. H. Liew

Abstract— Reconstructing quantum states is an important task
for various emerging quantum technologies. The process of
reconstructing the density matrix of a quantum state is known
as quantum state tomography. Conventionally, tomography of
arbitrary quantum states is challenging as the paradigm of effi-
cient protocols has remained in applying specific techniques for
different types of quantum states. Here, we introduce a quantum
state tomography platform based on the framework of reservoir
computing. It forms a quantum neural network and operates as
a comprehensive device for reconstructing an arbitrary quantum
state (finite-dimensional or continuous variable). This is achieved
with only measuring the average occupation numbers in a single
physical setup, without the need of any knowledge of optimum
measurement basis or correlation measurements.

Index Terms— Artificial neural networks, machine intelligence,
quantum computing, tomography.

I. INTRODUCTION

THE interconnectivity of nodes in neural networks allows
them to represent data in a high-dimensional effective or

feature space, in which they can learn to perform complicated
transformations based on examples of the desired output from
a given input. Typically, the signal at each node of a neural
network is encoded in some analog variables. In a physical
implementation, this could represent the action potential of a
biological network, the charge of a transistor in an electronic
system, or the amplitude of light in an optical network.

In systems where the physical size of a network node is
small, comparable to the de Broglie wavelength, the laws of
quantum physics come into play. The state of each node is no
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longer characterized by a single analog variable but by a quan-
tum state residing in the Hilbert space. Effectively, the Hilbert
space allows the traditional feature space of a neural network
to become exponentially larger. Consequently, quantum neural
networks [1] show speed-up of both learning [2], [3] and (the-
oretically) problem solving efficiency [4]–[7]. However, as the
systems for building such networks typically require nanoscale
precision to engineer correctly the couplings between network
nodes, they are not easy to come by. If such controllability
can be achieved, then quantum neural networks are powerful
architectures, which can enhance quantum computers [8],
[9] and quantum annealers [10]. Yet, since there is only
limited access to even small-scale quantum computers, many
applications of quantum neural networks are unexplored. The
majority of works focus on how quantum systems can be used
for classical tasks; however, they could also be applicable to
tasks in quantum information processing, i.e., tasks that are
not only enhanced by the availability of the Hilbert space but
cannot be performed without the Hilbert space to begin with.

Among the forms of classical recurrent neural networks,
reservoir computing emerged as particularly suitable for hard-
ware implementations in a wide variety of systems [11]. The
training of recurrent neural networks is often computationally
inefficient and can be a nonconverging process [12], [13].
In contrast, reservoir computing uses a randomly connected
reservoir as a processing unit where the input signal is to be
fed. Training takes place only at the readout level and keeps the
reservoir itself unchanged. Consequently, training of a classical
reservoir computer is relatively straightforward and computa-
tionally efficient [12]. The concept was recently generalized
to quantum systems and shown to allow the classification of
quantum states as entangled or separable [14] (entanglement is
a property of quantum states empowering communication and
computation). While recognizing entanglement is an important
task in quantum information, it is far from a complete char-
acterization of a quantum state. While in classical physics,
a state is determined by measuring some set of characteristic
quantities (e.g., the number of particles or intensity in each
mode) that should be the same if the same measurement is
performed on identical states, in quantum physics, a state
does not have well-defined characteristics before measure-
ment, and measurements performed on identical states can
have different results. A quantum state is, thus, defined by
a distribution of different possible measurement outcomes,
and the possible correlations between those measurements.
The most general quantum state is typically represented by a
density matrix, and the process of reconstructing this density
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matrix from multiple copies of a quantum state is known as
quantum state tomography. Whether with finite-dimensional
or continuous variable systems, quantum state tomography
requires the processing of outcomes (complex data) of mea-
surements in a complete set of bases [15]–[19]. The number
of required measurement bases increases exponentially with
the increasing size of a quantum system (e.g., number of
qubits or number of quantum modes). Noting that performing
measurements in different bases amounts to reconfiguring
an experimental setup, quantum state tomography becomes
exceedingly challenging as the number of measurement bases
grows. While adaptive and self-guided methods [20]–[22]
and neural network protocols used on classical data obtained
from independent experiments [23]–[25] or methods taking
advantage of specific properties of finite-dimensional density
matrices [26], [27] reduce the number of required measure-
ment bases, they still need many measurements in different
bases to fully reconstruct quantum states. Protocols based on a
many-outcome measurement do avoid multiple reconfigurable
measurements [28], [29]; however, complexity remains in
single-photon detections, their correlation measurements, and
in the reconstruction method that depends on the specific
transformation used in the experiment. Advanced tomographic
schemes in the continuous variable domain, e.g., schemes
based on measurements on the displaced quantum states [30]
or via a Lagrange interpolation method [31], also require
measurements in different bases in phase space. Moreover,
none of these schemes are universally applicable for states
representing both finite-dimensional and continuous-variable
systems.

Here, we present quantum reservoir state tomogra-
phy (QRST) as a platform for universal quantum state
reconstruction. We consider a device that receives quantum
information in the form of an optical field, which merges into a
quantum reservoir network. The readout elements of the device
are then provided by the occupation numbers measured on the
reservoir (see the scheme in Fig. 1) rather than requiring any
correlation measurements. This scheme constitutes a quantum
version of reservoir computing that performs a quantum task
but here without assuming the preexistence of a quantum
computer. For QRST, while the quantum features of a reservoir
allow simplifying the experimental protocol to a single mea-
surement process, its reservoir computing framework enables
to simplify the reconstruction subsequent to the measurement
and guarantees its universal success for any quantum states in
finite-dimensional and continuous-variable domains.

II. RESULTS

Our scheme of quantum tomography using a quantum
reservoir is schematically described in Fig. 1, where an input
quantum state, represented by the density matrix ρin, is inci-
dent on a quantum network excited with a uniform coherent
field P . We consider a 2-D lattice of quantum dots (two-level
systems) for the quantum network (reservoir), represented by
the Hamiltonian

Ĥ =
∑
�i j�

Ji j
(
ĉ†

i ĉ j + ĉ†
j ĉi

) + P
∑

i

(
ĉ†

i + ĉi
)

(1)

Fig. 1. Scheme of QRST. Here, the reservoir is a fermionic lattice with
random intersite couplings. The input quantum state is taken in the form of
an optical field incident on the reservoir. The incident field is coupled to the
reservoir in cascade. The reservoir is excited with an additional resonant pump.
The occupation numbers of the fermionic sites provide the readout elements,
which then yield the final output Yout in the form of the reconstructed density
matrices or the Wigner functions. The output weight matrix Mout is to be
obtained through training.

where ĉi is the fermionic field operator (represents the quan-
tum dots) at site i , and Ji j are the hopping amplitudes between
the nearest neighbor sites i and j . We consider that Ji j are
randomly distributed between positive and negative values
such that the spectral radius (largest absolute eigenvalue) of
the hopping part of the Hamiltonian is J̃ . The dynamics of
the system can be described by the quantum master equation

i h̄ρ̇ = [Ĥ , ρ] + iγ

2

∑
j

L(ĉ j )+ i�(t − t1)
∑

k

ηk

2γ
L(âk)

+ i�(t − t1)
∑
k, j

Min
jk

([
âkρ, ĉ†

j

] + [
ĉ j , ρâ†

k

])
(2)

where âk are the field operators of the input modes (which
can be bosons or fermions), ρ is the combined density
matrix representing the reservoir and the input modes, and
L(x̂) = 2x̂ρ x̂† − x̂† x̂ρ − ρ x̂† x̂ is the Lindblad superoperator
for a field operator x̂ . On the right-hand side of (2), the
first term represents the coherent Hamiltonian evolution of
the reservoir, the second term represents the decay in the
reservoir modes with the rate γ /h̄, and the third term is
representing decay in the input modes with rates ηk/(h̄γ )
due to the cascaded coupling between the input modes and
the reservoir, represented by the remaining terms [32], [33].
The parameters ηk = ∑

j (Min
jk)

2 are set by the cascaded
formalism to ensure that the emitted photons from the input
modes are only absorbed by the reservoir. Min

jk are the input
weights randomly chosen from the interval [0, ω]. �(t − t1) is
the Heaviside function signifying that the cascaded coupling
between the input modes and the reservoir fermions starts at
t = t1, where t1 is an initial time interval.

We perform QRST in four steps.

1) Initially, for 0 ≤ t < t1, the reservoir is only excited
with the uniform field P such that the reservoir at time
t1 reaches a steady state.
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2) Then, we activate the cascaded coupling between the
input modes and the reservoir through the Heaviside
function. This coupling moves the reservoir out of its
initial steady state.

3) In this transient, we measure the expectation values of
the occupation numbers n j = �ĉ†

j ĉ j� at time t = t1 + τ
for all fermions in the reservoir. These occupation num-
bers provide the readout elements for the processing.

4) We evaluate the desired output Yout = Mout�n + �m from
the readout elements, where the output weight matrix
Mout and state-independent constant vector �m are to be
determined through training.

We first present the results of simulations of this
tomographic scheme in various situations to demonstrate its
universality and then explain the observed features with a
mathematical proof of the process.

A. Tomography in Finite Dimensions

Consider a system represented by a D dimensional Hilbert
space. The density matrices representing the quantum states
of this system can be written as

ρin = 1

D

(
�+

∑
i

siζi

)
(3)

where si are the D2 − 1 independent parameters required
to describe a state in D dimensions, and ζi are the SU(D)
generators that together with the identity matrix � satisfy the
completeness relation in the space of D × D matrices [34].
The parameters si are chosen using the Monte Carlo sampling
technique with the constraint that all eigenvalues of ρin are
positive semidefinite (see the Supplementary Material). To per-
form tomography, we assign Yout = �ρin, where �ρin represents
the density matrix ρin arranged in a column vector format. We
find the output weight matrix Mout and the constant vector
�m by training the network with known examples of random
density matrices. Here, training is equivalent to solving the
matrix equation �ρin = Mout�n + �m. As the matrix equation
corresponds to D2 linear equations, the required minimum
number of known examples of ρin is D2 for D dimensional
states. These training states require to be linearly independent
such that each example represents an independent equation.
In fact, we can consider D2 number of randomly generated
states for training, as it is statistically unlikely to randomly
generate linearly dependent states. However, we train the
network using the ridge regression technique [12] with slightly
larger number of examples than D2 to avoid insufficient
number of independent equations due to the rare generation of
linearly dependent states. Once Mout and �m are determined,
the density matrix of an input state is reconstructed from the
output as �ρ tomo

in = Yout = Mout�n + �m, where �ρ tomo
in is the

vector form of the reconstructed density matrix ρtomo
in . This

reconstructed matrix ρtomo
in might be imprecise. To estimate

possible errors in the tomography, we calculate the fidelity

F = (
Tr

[√√
ρin ρ

tomo
in

√
ρin

])2
. (4)

In error-free tomography, F = 1, and F < 1 otherwise.

In Fig. 2(a), we show the fidelity F for different reser-
voir sizes N and dimensions D. The fidelity systematically
increases with increasing reservoir size for any D, and the
fidelity reaches 1 at N = D2−1 for D = 2 and 3, respectively.
We could not fully verify this relation for D = 4 as it requires
to simulate a quantum reservoir of size N = 15, which
is beyond our computational reach. However, we introduce
the concept of “time multiplexing” in Section II-C, which
drastically reduces the required size N .

B. Typical State Tomography

We have shown the tomography of density matrices sampled
in the full D2 − 1 parameter space. However, quantum states
generated in actual experiments are often restricted in a small
subspace of the full parameter space. As an example for
representing such states, we consider noisy Bell states: ρin =
(1 − 	)|ψ��ψ| + (	/4)�, where |ψ� = (|00� + e−iϕ |11�)/√2,
and 	 is a parameter quantifying the amount of noise. For
training, we use a supervised learning technique that requires
example input states. We generate the example states ρin with
randomly chosen 	 and ϕ from the intervals [0, 0.2] and
[0, 2π], respectively. Using the ridge regression method and
the example states, we obtain the output weight matrix Mout

and �m (see the Supplementary Material). After the training,
we use another set of randomly generated 	 and ϕ to obtain
the corresponding ρin for testing the reconstruction ability of
QRST. While the full reconstruction of an arbitrary two-qubit
density matrix requires 15 readout elements, full reconstruc-
tion of the noisy Bell states requires only two readout elements
[see Fig. 2(a)]. This reduction in the required number of
readout elements is due to the smaller number of independent
parameters needed to represent the input states (training and
testing are performed with the same class of states). Simi-
lar reasons manifest in the tomography of low-rank density
matrices [26] or in adaptive methods [22]. However, QRST
automatically learns this fact from training and applies it
for tomography without any state-specific modification in the
scheme.

C. Time Multiplexing

The abovementioned simulations show that a single mea-
surement process (measuring average occupation numbers in
a single physical setup) with a reservoir size N = D2 − 1,
which provides D2 − 1 readout elements, is sufficient for full
reconstruction of density matrices. However, note that one
can increase the number of readout elements by performing
measurements at multiple times. The input modes are coupled
to the reservoir for a time interval τ between t = t1 and
t = t1 + τ . One can measure the occupation numbers at M
different times t = t1 + jτ/M ( j = 1, 2, . . . ,M) during
this time interval. Now, instead of N readout elements in a
reservoir size of N , one has N × M readout elements and,
thus, the expected reservoir size N = (D2 − 1)/M to achieve
a fidelity F = 1. In Fig. 2(b)–(d), we show the fidelity of the
reconstructed density matrices as functions of the reservoir
size N and multiplexity M that indeed confirms this scaling.
In Fig. 2(e) and (f), we show an example of a two-qubit density
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Fig. 2. (a) Calculated fidelities as functions of reservoir size N (number of fermions) for qubit, qutrit, two-qubit, and noisy Bell states. Color plots of fidelities
calculated for (b) qubits, (c) qutrits, and (d) two-qubit as functions of reservoir size N and measurement multiplexity M (the number of time instances when
the occupation numbers are measured). The red dotted lines in each of the plots represent the relation N M = D2 −1. We find full tomographic reconstruction
of the density matrices with fidelity F = 1 for the regimes beyond the red dotted lines where N M ≥ D2 −1. The data points are averaged over ten realizations
of all random parameters. (e) and (f) Real and imaginary parts of an example two-qubit density matrix and the corresponding reconstruction by a QRST
device with N = 2, M = 6 (dotted line) and N = 6, M = 6 (solid line) with the fidelities 0.9515 ± 10−5 and 1 ± 10−5, respectively. The basis states |n� for
n = 0, 1, 2, and 3 (same for m) represent the two-qubit basis states |00�, |01�, |10�, and |11�, respectively. Here, we use J̃/γ = 1, ω/γ = 1, t1 = 7.6h̄/γ ,
τ = 1.5h̄/γ , and P/γ = 0.3, and the random parameters 	 and ϕ are chosen from the intervals [0, 0.2] and [0, 2π ], respectively.

matrix and the corresponding reconstructions using (N = 2
and M = 6) and (N = 6 and M = 6).

D. Continuous Variable Tomography

We now consider continuous variable tomography using
QRST. Despite an infinite (large) dimensionality of a con-
tinuous variable state, we show that an accurate tomogra-
phy can be performed with a few readout elements in a
single measurement process. For continuous variable states,
it is convenient to represent them with the Wigner functions
W (ρin; xi , p j), which are defined on a grid of continuous
variables xi and p j for a given density matrix ρin. We assign
Y out

i j = W (ρin, xi , p j) as the output for QRST. Training
provides the optimum output weight matrix and constants such
that the reconstructed W (ρin; xi, p j) = ∑

k Mout
i jknk + mi j

has the minimum deviation from the corresponding known
training Wigner functions. We use 96 randomly generated
squeezed-thermal states for training. In Fig. 3, we show the
reconstructed Wigner functions of some randomly generated
squeezed-thermal states (see the Supplementary Material) with
a reservoir size of N = 4 and a multiplexity of M = 4
and their deviations from the true Wigner functions. As a
quantitative measure of the tomography error, we define

E =
√∑

i, j [W (ρin; xi, p j)− W tomo(ρin; xi, p j)]2∑
i, j [W (ρin; xi, p j)+ W tomo(ρin; xi, p j)]2

(5)

where W tomo(ρin; xi, p j) is the reconstructed Wigner function
corresponding to the true one W (ρin; xi, p j). In Fig. 4,
we show the histogram of the estimated errors for different

Fig. 3. Tomography of continuous variable quantum states. Here, we show
some considered examples of (a)–(c) reconstructed squeezed-thermal states
and (d)–(f) their deviations from the true states. The deviation is defined
by |W (ρin; xi , p j )− W tomo(ρin; xi , p j )|. Color scales for (a)–(c) and (d)–(f)
are given in (b) and (e), respectively. We here use 16 readout elements
(N = 4, M = 4), J̃/γ = 1, ω/γ = 1, t1 = 7.6h̄/γ , τ = 1.5h̄/γ , and
P/γ = 0.3.

numbers of readout elements. We find the error systematically
decreases with an increasing number of readout elements.
In fact, the error is impressively low even with a small
reservoir size, such as N = 4 with M = 4. Note that the
effective dimension D of the considered squeezed-thermal
states is large. We identify the effective dimension D as
the smallest dimension for which the mean photon number
becomes independent of D (see the Supplementary Material).
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Fig. 4. Histograms for errors in estimating Wigner functions for increasing
number of readout elements. (a)–(d) Histogram of 500 squeezed-thermal states
for their tomographic errors E defined in (5). The considered number of
readout elements are 4, 6, 9, and 16 for (a)–(d), respectively. Here, we use
J̃/γ = 1, ω/γ = 1, t1 = 7.6h̄/γ , τ = 1.5h̄/γ , and P/γ = 0.3.

As shown in Fig. 3, this small reservoir can reconstruct well
the features of the Wigner functions. Already, for a reservoir
with N = 3 and M = 3, which is an even smaller reservoir
with little multiplexity, the reconstruction errors are mostly
close to zero. This demonstrates that QRST is a very powerful
tool for quantum state tomography in the continuous variable
domain.

III. THEORETICAL GENERALIZATION

Let us now explain the features observed in the simulations
and prove their generalization to arbitrary dimension. Since
there are D2 − 1 independent real parameters in a density
matrix in order to estimate all of them, the reservoir must
have at least N = D2 − 1 lattice sites (or N = (D2 − 1)/M
if time-multiplexing is used). In the numerics, we find that
for this number of sites QRST trained with D2 random states
reconstructs an arbitrary input state perfectly, i.e. with unit
fidelity. This can be understood as follows. Note that an
arbitrary density matrix can be decomposed in terms of D2

linearly independent states

ρin =
∑

i

αiρi , with
∑

i

αi = 1 (6)

where the coefficients αi are not necessarily nonnegative but
sum up to unity due to normalization. A random set of D2

states is practically always linearly independent. Therefore,
training of QRST with random states ρi is equivalent to
determining the matrix Mout and vector of constants �m by
solving the following set of D2 linear equations:

Mout�ni + �m = �ρi (7)

where �ni is the vector of readout elements for random input
state ρi with vector representation �ρi . In the Supplementary
Material, we prove that the mean occupation number of a

fermionic site of the reservoir can be represented as a positive-
operator-valued measure (POVM) measurement on the input
modes

n j = 〈
ĉ†

j ĉ j
〉 = tr(ρin E j ) (8)

where E j is the POVM element corresponding to finding a
fermion on the j th lattice site. Hence, the vector of readout
elements corresponding to the arbitrary state in (6) is given
by �n = ∑

i αi �ni . It is now essential that our reconstruction
procedure trained in (7) is a linear map on the readout vector
�n. Indeed, one readily verifies that Mout�n + �m = �ρin, i.e.,
QRST perfectly recovers an arbitrary input state.

In conventional quantum state tomography, each von Neu-
mann measurement basis provides at most D − 1 independent
real parameters characterizing the input state. Accordingly, one
needs at least D + 1 such measurement bases to reconstruct
an arbitrary state in the D-dimensional Hilbert space [35].
Typically, more measurement bases are required due to the
complexity of these D + 1 measurements as they necessarily
require projections on entangled states [36]. A way to reduce
the number of measurement bases is to consider their gen-
eralization in the form of informationally complete POVMs.
Typically, these are also difficult to implement (see [37]–[39]),
and it is our main point here that the informationally complete
set of N POVMs that we propose is practically implementable
even for high-dimensional input. Furthermore, an experimenter
does not have to know the corresponding POVM elements.
They are established indirectly via training, and the output of
QRST is the final density matrix.

IV. ERROR ANALYSIS

As in any tomography scheme, the presence of measure-
ment errors can introduce limitations. In a given run of the
experiment, the measurement of the occupation number of a
given node would give an integer number of particles. It is only
by repeating the experiment multiple times that an average is
obtained. The error in the measured occupation number is then
given by

σn j = σn j /
√

Nr (9)

where Nr is the number of repetitions and σn j =
(�n̂2

j � − �n̂ j �2)1/2 is the standard deviation in the particle
number, which could be obtained from the density matrix.
In addition to the quantum error, we also consider other
random and systematic errors in the experimental setup.

To characterize the possibility of further random errors,
we consider that even after being repeated Nr times, the
evaluation of the occupation numbers with a given input state
ρ(i)in would still contain an error, where the actual value of the
average occupation number is

ñ j = n j (1 + σr gr,i, j ) (10)

where gr,i, j is a Gaussian random variable, which is different
for different input states. σr defines the overall size of the
random errors, and we allow it to be larger than the quantum
error, potentially characterizing additional random errors in an
experimental setup. In Fig. 5(a), we show how the average
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Fig. 5. Effects of (a) statistical errors and (b) systematic errors in QRST
returning states of a single qubit. We plot the average fidelity (averaged over
160 random qubit states) for two reservoir sizes N = 3 (blue solid line) and
N = 4 (red dotted line). The statistical and systematic error percentages are
given by σr ×100% and σs ×100%, respectively. (c)–(e) Minimum eigenvalues
of 320 reconstructed density matrices for the number of training samples 64,
32, and 8, respectively. The positive and negative eigenvalues are indicated
with blue and red points. Here, we considered 20% statistical and systematic
errors both and a reservoir of size N = 3. We find that even with high errors
in the output, the reconstructed density matrices show negative eigenvalues
only rarely for a small number of training samples.

fidelity of single-qubit states varies with the overall size of
the random errors. Even with errors on the order of 10%, the
fidelity remains above 90%. Furthermore, the use of a larger
reservoir allows for a slight compensation of errors, and we
can recall that random errors in an experimental setup could
be further reduced by repeating the experiment more times.

Systematic errors in the average occupation numbers can be
accounted for by defining

ñ j = n j (1 + σs gs, j) (11)

where σs defines the size of the systematic errors that are
given by a Gaussian distribution and taken different for each
node, independent of the input state. As shown in Fig. 5(b), the
fidelity is unaffected by systematic errors. This is because, pro-
vided that the systematic error is accounted for both in training
and testing, the network would have learned to compensate
for the systematic errors in measurement. Mathematically, this
is explained from the relation Mout(�ni + δ�n) + �m = �ρi ,
where the systematic error δn j = σs gs,jn j is independent
of the input state index i . Thus, we can redefine the vector
�m � = �m + Moutδ�n to write Mout�ni + �m � = �ρi , where �m �
remains a constant vector that does not depend on the input
state and is determined by training.

The right figures in Fig. 5 show the minimum eigenvalues of
the reconstructed density matrices. We find that for sufficient
training, the eigenvalues of the reconstructed density matrix
are nonnegative even when the output errors are as large as
20%. Although we have not explicitly imposed positivity on
the reconstructed density matrix, the training process, which
is performed only with physical density matrices, drives the
neural network to form only a positive density matrix at the
output. However, practical limitations, such as an insufficient
number of training samples or extremely small reservoir size
together with large measurement error, can lead to the loss

Fig. 6. Quantum state tomography with alternative form of coupling between
the input mode and the reservoir sites. (a) Schematic of the coupling between
input qubits and the reservoir using quantum hopping. (b) Calculated fidelities
as functions of reservoir size N (with M = 1) for single-qubit states. Other
parameters are taken same, as mentioned in Fig. 2.

of positivity of the estimated density matrix [see Fig. 5(e)].
In such situations, a maximum likelihood estimation can be
employed to find out the closest physical density matrix.
A wealth of study has been devoted to explore this estima-
tion [40]–[44]. When needed, these methods can directly be
applied as a final step in the QRST scheme. We empha-
size again that our results strongly suggest that nonphysical
reconstructions do not arise for a sufficiently large number of
training samples, and note that the training has to be performed
only once.

V. DISCUSSION

For hardware implementation, our proposed platform can be
realized in a wide range of systems in principle, e.g., arrays of
semiconductor quantum dots, coupled superconducting qubits,
and trapped ions and atoms. Here, we have considered a
cascade formalism to model the coupling between the optical
input states to the reservoir sites. Equivalently, for qubits real-
ized in ions, atoms, spins, and superconductors, the cascade
coupling can be replaced with quantum hopping (Josephson
type tunneling) between the input qubits and the reservoir sites.
This can be described by an interaction Hamiltonian

Ĥint =
∑

jk

Min
jk

(
ĉ†

j âk + â†
k ĉ j

)
(12)

where the whole system is described by the total Hamiltonian
Ĥtot = Ĥ + �(t − t1)Ĥint. For spin systems, the same
interaction Hamiltonian is applicable. In the language of spins,
Ĥint translates to Ĥint = ∑

jk Min
jk(σ̂

+
j σ̂

−
k + σ̂+

k σ̂
−
j ), where

the correspondence is made with (ĉ j , ĉ†
j) → (σ̂−

j , σ̂
+
j ) and

(âk, â†
k ) → (σ̂−

k , σ̂
+
k ), and σ̂±

m = (σ̂ x
m ± i σ̂ y

m)/2 are the Pauli
matrices for site m. This interaction is also known as the XY
interaction between the spins. In Fig. 6, we show that QRST
can also be performed by replacing the cascade coupling
with Ĥint. Exciton–polaritons in semiconducting microcavities
(hybrid light–matter quasiparticles) are also suitable for realiz-
ing quantum reservoirs as they naturally couple with external
optical fields and can reach strongly interacting regimes. Here,
the coupling between the input state and the reservoir is
realizable either with the cascade method or with the quantum
hopping. Moreover, while implementing a quantum reservoir
in a physical system, our protocol does not require precise
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control on the system parameters, rather the randomness is a
useful resource for successful quantum state tomography.

Without time multiplexing, the required reservoir size
for D dimensional tomography is N = D2 − 1. With the
time multiplexing (M), the required size reduces to N =
(D2 − 1)/M . An alternative route to reduce N would be
measuring the quantum correlations between the nodes. Since
the number of possible quantum correlations increases expo-
nentially with N , the required reservoir size would decrease
to the order of log(D). However, we think that measuring an
exponentially large number of quantum correlations would be
a much challenging task compared with measuring the average
occupation numbers.

VI. CONCLUSION

We have presented QRST as a platform for quantum state
reconstruction. Unlike existing schemes for specific quantum
states either in the finite-dimensional or continuous-variable
domain, our scheme operates the same for any quantum state.
Within our scheme, tomography is accomplished with a single
measurement process of intensity, which does not require
photon number resolution or correlated detection, in contrast to
previous tomography schemes that use multiple measurements
in different bases and correlation measurements of complex
informationally complete generalized measurement schemes.
Here, the challenge can be in achieving a reservoir that can be
large for higher dimensional tomography. However, we have
shown that the required size of a quantum reservoir can be
drastically reduced by measuring occupation numbers at the
reservoir lattice sites at multiple times (time multiplexing)
for readout. It is, thus, an experimentally friendly, practically
scalable scheme that can be universally applied to any quantum
state.
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